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Distribution functions of a simple fluid under shear: Low shear rates

Yu. V. Kalyuzhnyi
Institute for Condensed Matter Physics, Svientsitskoho 1, 290011 Lviv, Ukraine

S. T. Cui, P. T. Cummings, and H. D. Cochran
Chemical Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6224

and Department of Chemical Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200
~Received 3 February 1999!

Anisotropic pair distribution functions for a simple, soft sphere fluid at moderate and high density under
shear have been calculated by nonequilibrium molecular dynamics, by equilibrium molecular dynamics with a
nonequilibrium potential, and by a nonequilibrium distribution function theory@H. H. Gan and B. C. Eu, Phys.
Rev. A 45, 3670 ~1992!# and some variants. The nonequilibrium distribution function theory consists of a
nonequilibrium Ornstein-Zernike relation, a closure relation, and a nonequilibrium potential and is solved in
spherical harmonics. The distortion of the fluid structure due to shear is presented as the difference between the
nonequilibrium and equilibrium pair distribution functions. From comparison of the results of theory against
results of equilibrium molecular dynamics with the nonequilibrium potential at low shear rates, it is concluded
that, for a given nonequilibrium potential, the theory is reasonably accurate, especially with the modified
hypernetted chain closure. The equilibrium molecular-dynamics results with the nonequilibrium potential are
also compared against the results of nonequilibrium molecular dynamics and suggest that the nonequilibrium
potential used is not very accurate. In continuing work, a nonequilibrium potential better suited to high shear
rates@H. H. Gan and B. C. Eu, Phys. Rev. A46, 6344~1992!# is being tested.@S1063-651X~99!05608-1#

PACS number~s!: 05.60.Cd, 05.20.Jj, 05.90.1m
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I. INRODUCTION

Kinetic processes are of fundamental interest and imp
tance in many branches of science and engineering, yet t
ries of nonequilibrium systems have lagged far behind th
of equilibrium systems. For example, the theories of equi
rium statistical mechanics provide practical means for ca
lating the properties of fluids at equilibrium from their stru
ture. And likewise, the structure of fluids at equilibrium,
represented by their pair distribution functions, can be ca
lated with reasonable accuracy and efficiency using inte
equation theories based on the Ornstein-Zernike~OZ! rela-
tion with an approximate closure relation, such as
Percus-Yevick~PY! or the hypernetted chain~HNC! equa-
tion; see, for example,@1#. The situation is nowhere near s
well-developed, however, for systems that are not at equ
rium. Useful theories have been available only for dilute g
systems or for systems only slightly removed from equil
rium, where linear-response theory leads to the linear tra
port equations with constant transport coefficients, such
Newton’s law of viscosity. Evans and Morriss@2# present a
well-organized development of the modern statistical m
chanics of nonequilibrium fluids and present practical me
of determining the properties of nonequilibrium fluids, su
as the transport coefficients for viscosity, thermal conduc
ity, mass diffusivity, etc., from molecular simulation calc
lations with computers, e.g., calculation of the viscosity o
liquid far from equilibrium by nonequilibrium molecular dy
namics~NEMD!.

There have been relatively few attempts at theories
dense, nonequilibrium fluids in the nonlinear regime. A
proaches based on fluctuating hydrodynamics have been
lized, in which nonrandom fluctuations have been added
PRE 601063-651X/99/60~2!/1716~8!/$15.00
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phenomenological way to the macroscopic continuity eq
tions allowing calculation of the density-density correlati
function and from it the nonequilibrium radial distributio
function and the structure factor; see, for example,@3#. Simi-
larly, Hess@4,5# proposed and solved a phenomenologi
evolution equation for the nonequilibrium radial distributio
function. Gan and Eu~GE! proposed@6,7# an alternative ap-
proach and applied it to dense fluids at both low and h
shear rates. They derived a heierarchy of nonlinear inte
equations for the nonequilibrium fluctuations from the no
equilibrium canonical distribution function, an approa
similar in spirit to the theory of the structure of dense eq
librium fluids. The GE theory leads to an integral equati
for the anisotropic nonequilibrium pair distribution functio
which reduces to the PY integral equation in the equilibriu
limit, suggesting that the OZ relation also holds for noneq
librium fluids, i.e., the nonequilibrium OZ equation~NEOZ!.
In essence, the GE theory postulates a nonequilibrium po
tial under which the equilibrium structure of a fluid is that
the nonequilibrium fluid.

Unfortunately, the GE theory has not received significa
attention or use, and testing to date has been limited. In v
recent work@8#, Farhat and Eu used the nonequilibrium p
tential of Gan and Eu@6# in performing Monte Carlo~MC!
simulations of a simple fluid under shear; the results show
some deviations from results for the same system by NEM
reflecting some deficiency or deficiencies in the nonequi
rium potential or the MC algorithm, or in both. Farhat an
Gan further showed resasonable agreement between th
theory and MC, both with the same nonequilibrium potent
Thus, there is considerable promise in the NEOZ appro
but no definitive test of its accuracy or reliability. The OZ
based theories of equilibrium fluids have been usefully
1716 © 1999 The American Physical Society
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PRE 60 1717DISTRIBUTION FUNCTIONS OF A SIMPLE FLUID . . .
tended to complex molecular fluids, even to long-chain po
mers @9–11#. If the NEOZ-based theory and th
nonequilibrium potential of GE were found to be accurate
definitive testing against simulations, they, too, might be u
fully extended for practical applications with complex m
lecular fluids. If the theory or potential is found to be de
cient in such testing, a sound basis is established for see
improvement.

In this paper, our purpose is to begin exploring the u
fulness of the GE theory and to test it against new simula
results generated for this purpose for a simple soft sph
fluid. As an aid to the reader, we summarize the GE theor
Sec. II. In Sec. III we describe our approach to the numer
solution of the NEOZ equation and, in particular, to the v
sions with the PY closure and with a modified hypernet
chain~MHNC! closure. Special attention is paid to the num
ber of spherical harmonics used in the numerical solution
Sec. IV we briefly describe our NEMD simulations as w
as our equilibrium molecular-dynamics~EMD! calculations
with GE’s nonequilibrium potential. We present and discu
our results in Sec. V, and we conclude with a few br
remarks in Sec. VI.

II. SUMMARY OF GAN-EU THEORY

To avoid unnecessary repetition, we will present h
only a summary of GE theory, focusing mostly on the deta
which are needed to formulate the final set of equations to
solved. We refer the interested reader to the original pu
cations@6,7#. The point of departure in the OZ theory for th
nonequilibrium structure of dense simple fluids is the no
equilibrium distribution function written in the exponenti
or canonical form suggested by the solution of the gene
ized Boltzmann equation. This form, with nonequilibriu
effects accounted for via the corresponding terms in the
tential energy function, is similar to that used in the equil
rium statistical mechanical theory of fluids. The nonequil
rium part of the potential follows from the solution of the s
of equations derived from the generalized Boltzmann eq
tion. This set of equations couples the nonequilibrium pot
tial with the macroscopic observables, which are used to
scribe the nonequilibrium process of interest. Thus,
initial problem of describing the nonequilibrium structu
has been substituted by the problem of describing the e
librium structure with nonequilibrium potential. The latte
task is rather straightforward and once the interparticle
tential is specified, one can use the whole machinery of
equilibrium statistical mechanical theory of liquids to gen
ate the corresponding OZ equation and its closure conditi
In @6,7# this goal is achieved by formulating the correspon
ing Kirkwood hierarchy of equations and adopting the Kir
wood superposition approximation together with the assu
tion that the non-heat-conducting fluid in question underg
steady shear flow at uniform density and temperature. I
assumed also that the equilibrium interparticle interaction
pairwise additive. As a result, the nonequilibrium analog
the PY equation has been derived. This PY-like equation
be written in the form of the OZ equation, which couples t
nonequilibrium direct c(r12,t) and total h(r12,t) time-
dependent pair correlation functions
-
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c~r12,t !5h~r12,t !1rE dr3c~r13,t !h~r32,t ! ~1!

and a PY-like closure relation

c~r,t !5 f ne~r,t !@h~r,t !2c~r,t !11#, ~2!

wherer is the number density,f ne(r,t) is the Mayer function
for the nonequilibrium pair potentialVne(r,t), i.e., f ne(r,t)
5exp@2bVne(r,t)#21, andb51/(kBT).

As one can see, a key quantity of the present theory is
nonequilibrium potentialVne(r,t), which follows from the
solution of the corresponding kinetic equation. To proce
further, it is necessary to specify the particular fluid of inte
est, i.e., its equilibrium potential and shearing flow con
tions. Following@6,7#, we consider steady-state planar Co
ette flow of a fluid confined between two infinite parall
plates. They axis is perpendicular to the plates which a

located aty52
1 1

2 D and move with a uniform velocity6 1
2 u0

in the opposite directions along thex axis. The correspond
ing set of equations for the nonequilibrium potentialVne(r )
has been derived and solved in@6,7#. As a result, the follow-
ing general expression for the nonequilibrium potential h
been proposed:

Vne~r ,u,f!5V~r !1a~r !r
]V~r !

]r F P

2p
sin2u sin 2f

2
1

3

N1

2p
~2 sin2u sin2f21!G , ~3!

whereV(r ) is the equilibrium potential,p is the hydrostatic
pressure,P andN1 are the shear and normal stresses, resp
tively, mr is reduced mass,s is the size parameter o
the particles, g is the rate of shearing, i.e.,g
5(]ux /]y), ux is the flow velocity along thex axis, and
a(r ) is a switching factor

a~r !5H g0~r !, r<r 0

1, r .r 0
~4!

which is needed to avoid the infinitely large negative va
of Vne(r) for r 50. Here,r 0 is defined by the following in-
equality:g0(r )<1 for 0,r<r 0 andg0(r ) is the equilibrium
pair distribution function of the present system. The sh
stress and normal stress satisfy the following algebraic eq
tion:

ḡ

6

tpp

h0
A1

2S 12
4

9
x2D1sinhH tpp

h0
A1

2 S 2

3
x21D J 50,

~5!

where

N1

2p
5x,

P

2p
52

1

2
A2xS 11

2

3
xD ,

ḡ5
6h0g

p
, tp5b

~2h0mr
1/2!1/2

rs~2b!1/2
,
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1718 PRE 60KALYUZHNYI, CUI, CUMMINGS, AND COCHRAN
and h0 is the Newtonian~zero-shear-rate! viscosity. The
nonequilibrium potentialVne(r) ~3! is specialized in the co
ordinate frame with the azimuthal angle around thez axis
denoted asf and the polar angle between vectorr and thez
axis denoted asu.

It is assumed that the expression for the nonequilibri
potential~3!, which we shall call the full potential, is valid
for any degree of departure from equilibrium, i.e., for a
values of the shear rateg. At low values of the shear rate, th
contribution from the terms involving the normal stressN1
can be neglected and for the shear stressP one can use the
Newtonian law of viscosityP52h0g. As a result, forḡ
,1 we have

Vne~r ,u,f!5V~r !2
h0g

2p
r
]V~r !

]r
sin 2f sin2u. ~6!

This expression for the nonequilibrium potential in the lo
shear limit, proposed in@6,7#, will be used for the results
presented in this paper; we shall refer to it as the low-sh
rate nonequilibrium potential. Work in progress will exami
results with the full potential~3!.

As in @6,7#, we consider the case of the soft-sphere eq
librium intermolecular potential

V~r !5eS s

r D 12

. ~7!

For this potential, NEMD results for the Newtonian viscos
have been parametrized@12#,

h05@0.17110.022~e6.83y21!#
~me!1/2

s2~be!2/3
, ~8!

TABLE I. The shear-rate-dependent viscosityh and pressure
for soft-sphere particles at packing fractionsn50.45 andn50.30
calculated from NEMD simulations, where the number in the
rentheses is the statistical uncertainty in the least significant d
of the corresponding number andt run is the total run length in the
reduced time unitt.

n50.45 n50.3
g* h p* t run g* h p* t run

0.00 1.42~2! 8.389~1! 0.00 0.496~4! 2.666~1!

0.04 1.423~16! 8.390~1! 2400 0.05 0.498~7! 2.666~1! 2920
0.09 1.404~7! 8.392~1! 3940 0.10 0.496~3! 2.666~1! 5120
0.16 1.409~6! 8.397~1! 1000 0.15 0.496~2! 2.667~1! 4340
0.25 1.389~5! 8.411~1! 1040 0.25 0.492~2! 2.669~1! 3120
0.30 1.391~5! 8.417~2! 660 0.36 0.489~2! 2.673~1! 740
0.36 1.378~4! 8.431~2! 920 0.456 0.487~1! 2.679~1! 2120
0.407 1.372~2! 8.443~1! 4080 0.50 0.484~2! 2.681~1! 940
0.50 1.355~2! 8.468~1! 3200 0.60 0.482~1! 2.689~1! 1180
0.64 1.333~4! 8.514~3! 340 0.689 0.479~1! 2.696~1! 2160
0.75 1.318~1! 8.555~1! 2400 0.80 0.474~1! 2.706~1! 1240
0.814 1.307~2! 8.579~1! 1620 1.00 0.468~1! 2.731~1! 820
1.00 1.277~1! 8.664~1! 980 1.20 0.460~1! 2.757~1! 6540
1.20 1.247~1! 8.678~1! 1320 1.44 0.450~1! 2.794~1! 2780
1.44 1.214~1! 8.904~1! 1660 1.60 0.443~1! 2.831~1! 800
1.60 1.191~1! 9.002~2! 640
r-

i-

wherey5(1/A2)rs3(be)1/4 and m52mr . This expression
for h0 has been used to calculate the nonequilibrium pot
tial ~6!.

The expression for the nonequilibrium potential~6! also
involves the value of the hydrostatic pressurep, which
should be calculated self-consistently for each particu
value of the shear rateg. With this aim one could use the
following expression for the pressure tensorP of the steady-
state sheared fluid@13#:

P5
r

b
U2

1

2
r2E dr

rr

r

]V~r !

]r
g~r! ~9!

which in the present case gives

bp

r
5114AprE

0

`

drg00~r !r 210. ~10!

Here,U is a unit second-rank tensor andg00(r ) is the (00)
component of the spherical harmonic expansion ofg(r). Al-
ternatively, one could use results from NEMD for both t
Newtonian viscosityh0 and the hydrostatic pressurep in
calculating the nonequilibrium potentialVne.

Because of the steady-state shearing conditions, the
equilibrium pair potential~6! as well as the direct and tota
correlation functions are time-independent. The NEOZ eq
tion and PY closure relation take the following form:

ĥ~k!5 ĉ~k!1r ĉ~k!ĥ~k! ~11!

and

c~r!5 f ne~r!@h~r!2c~r!11#. ~12!

The OZ equation~11! is written in terms of the Fourier trans
forms of the direct and total correlation functions. This for
of the OZ equation is more convenient for numerical calc
lations than the corresponding version of the OZ equat
written in the realr space. In addition to the PY closur
relation ~12!, we propose the so-called modified HN
~MHNC! closure with a bridge functionB(r) chosen in a
form proposed by Verlet@14#,

c~r!5exp@2bVne~r!1h~r!2c~r!1B~r!#2h~r!1c~r!21,

~13!

where

B~r!52
@h~r!2c~r!#2

2@110.8h~r!20.8c~r!#
. ~14!

For B(r)50, the present MHNC closure reduces to the HN
type of the closure, proposed in@6,7#.

III. NUMERICAL SOLUTION OF THE THEORY

The OZ equation~11! together with its closure relation
~12! @or Eq.~13!#, relations~10! and~5! form a closed set of

-
its
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PRE 60 1719DISTRIBUTION FUNCTIONS OF A SIMPLE FLUID . . .
equations to be solved. Solution of this set of equations
be obtained by expansion in spherical harmonics as has
utilized in the equilibrium theory of molecular fluids. It con
sists of expanding the correlation functions in spherical h
monics, writing the initial OZ equation as a set of equatio
for the spherical harmonic expansion coefficients in Fou
k space, and solving this set using either a direct itera
method or combining the latter with the Newton-Raphs
method. This technique is rather standard and details ca
found in many places~see, for example, Refs.@15,16#!. In
the present study, solutions of the corresponding set of e
tions for the spherical harmonic expansion coefficients h
been obtained using the direct iteration method. The forw
and inverse Hankel transforms, which are needed to co
the spherical harmonic expansion coefficients in real
Fourier spaces, have been carried out in logarithmic v
ables, using the method developed by Talman@17#. This

FIG. 1. Mayer function for the low-shear-rate nonequilibriu
potential~6! for g* 50.75,n50.45, andp* 5pe21s358.56. Exact
results forf5p/4 ~circles! andf53p/4 ~diamonds!; results with
l max54 ~dashed lines! and with l max58 ~solid lines!. Here r *
5r /s.

FIG. 2. The distortion of the fluid structure due to she
Dgne(r ,u,f)5gne(r ,u,f)2geq(r ), for the system with the low-
shear-rate nonequilibrium potential~6! at n50.45, u5p/2, f50,
g* 50.75, andpNEMD* 58.56 ~upper portion of the figure! and g*
50.5 andpNEMD* 58.47 ~lower portion of the figure!. MHNC ap-
proximation with l 58 ~solid lines!, MHNC approximation withl
54 ~long dashed lines!, PY approximation withl 54 ~short dashed
line!, and EMD~symbols!. Herer * 5r /s.
n
en

r-
s
r
n
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method allows us to sample effectively both the rapidly va
ing part of the correlation functions at small distances a
the long-range, slowly decaying portion using a relative
small number of grid pointsn5512, which cover the dis-
tance up tor /s573.

IV. MOLECULAR-DYNAMICS SIMULATIONS

Like the theoretical calculations, the molecular-dynam
calculations were performed for a soft-sphere fluid with t
equilibrium intermolecular potential~7!. For the NEMD cal-
culations, the SLLOD~so named because of its close re
tionship to the Dolls tensor algorithm! equations of motion
@2# were integrated using a velocity Verlet integrator with
Nose thermostat@1#. A time step of 0.002t was used for the
integration, wheret5sAm/e is the reduced time unit. The
soft-sphere potential was truncated atr c52.0s, and no long-
range correction was applied because it is very small. T
EMD calculations with the low-shear-rate potential~6! were
carried out in the same way but with the shear rate in
SLLOD equations of motion set to zero. NEMD and EM
calculations were performed with 2048 particles, and re
tively long simulations were carried out to ensure that
statistical uncertainties are small.

V. RESULTS AND DISCUSSION

The soft-sphere fluid was studied at two different valu
of the packing fractionn5p/6rs350.30, 0.45 and two dif-

,

FIG. 3. The same as in Fig. 2 forf5p/4.

FIG. 4. The same as in Fig. 2 forf53p/4.
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1720 PRE 60KALYUZHNYI, CUI, CUMMINGS, AND COCHRAN
ferent values of reduced shear rateg* 5gt5gsAm/e at
each packing fraction. Forn50.45, we consider the value
of the shear rateg* 50.50, 0.75 and forn50.3, g*
50.456, 0.689. All the calculations were carried out at
duced temperature valueb* 5be51. Table I presents re
sults from the NEMD calculations, including values of th
Newtonian viscosityh0 ~obtained by extrapolating the re
sults to zero shear rate! and values of the reduced hydrosta
pressurep* 5pe/s3 as a function of the reduced shear ra
g* 5gt, which are used as input to some of the theoreti
calculations.

As a first step in testing the theory, we compared PY a
MHNC results for the pair distribution functiongeq(r ) of the
system withn50.45 at equilibrium (g* 50) against corre-
sponding equilibrium molecular-dynamics~EMD! simula-
tion results. As expected, agreement between theoretica
sults and results of EMD simulation was good, and
agreement was better in the case of MHNC theory. To e
mate the number of harmonicsl max needed to represent th
Mayer function accurately for the nonequilibrium potent
~6!, in Fig. 1 we compare an exact Mayer function wi
Mayer functions approximated by a finite number of h

FIG. 5. The distortion of the fluid structure due to she
Dgne(r ,u,f)5gne(r ,u,f)2geq(r ) at n50.45, u5p/2, f
50, g* 50.75 ~upper portion of the figure!, g* 50.5 ~lower por-
tion of the figure!. EMD with the low-shear-rate nonequilibrium
potential~6! ~solid lines!, NEMD ~symbols!. Herer * 5r /s.

FIG. 6. The same as Fig. 5 but atf5p/4.
-

l

d

re-
e
ti-

l

-

monics. For the shear rateg* 50.75, the Mayer function for
the nonequilibrium potential~6! can be accurately repre
sented using eight harmonics. However, with further incre
of the shear rate, the number of harmonics needed to
scribe the Mayer function rapidly increases.

In order to test the accuracy of the PY and MHNC the
ries in reproducing the structure of the system with the lo
shear-rate nonequilibrium potential~6!, in Figs. 2–4 we il-
lustrate the distortion of the fluid structure due to shear, h
defined asDgne(r ,u,f)5gne(r ,u,f)2geq(r ), wheregne and
geq are the nonequilibrium and equilibrium pair distributio
functions, respectively, for two different values of the she
rate (g* 50.5, 0.75) and at system packing fractionn
50.45. Here predictions of PY and MHNC theories are co
pared against the corresponding EMD simulation results
the nonequilibrium potential~6! with hydrostatic pressure
obtained from NEMD simulation~Table I!. At lower values
of the shear rate (g* 50.5), agreement between both the
retical methods and EMD is very good for the values of t
azimuthal anglef5p/4 andf53p/4. For f50, PY and
MHNC underpredict the depth of the first minimum of th
differenceDgne(r ,u,f), with MHNC giving slightly better
results. For the higher shear rate (g* 50.75), agreement is
also better in the case of MHNC. Forf5p/4, agreement is
very good; forf50, MHNC slightly underpredicts the dept
of the first minimum ofDgne(r); and forf53p/4, MHNC

, FIG. 7. The same as Fig. 5 but atf5p/2.

FIG. 8. The same as Fig. 5 but atf53p/4.
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PRE 60 1721DISTRIBUTION FUNCTIONS OF A SIMPLE FLUID . . .
underpredicts the value of the first maximum. In all cases
of eight harmonics improves the results in comparison w
results obtained with only four harmonics.

Next we investigate the accuracy of the low-shear-r
nonequilibrium potential~6! in predicting the nonequilibrium
structure of the system in question. This goal can best
achieved by comparing the results from NEMD against
sults from EMD with the low-shear-rate potential~6!. Fig-
ures 5–9 make this comparison at two values of the redu
shear rate used by Gan and Eu,ḡ50.812 and 0.547 at pack
ing fraction n50.45 and atḡ50.764 at packing fractionn
50.3; the values ofḡ have been obtained using values
g* , p* from NEMD ~see Table I! and h0 using the
NEMD results parametrization~8!. There are notable differ
ences in the magnitude and radial position of peaks
Dgne(r ,u,f) between the NEMD results and the EMD r
sults using the low-shear-rate nonequilibrium potential~6!;
nevertheless, the low-shear-rate nonequilibrium potential~6!
does seem to capture some of the effects of shear on the
structure, particularly at the lower shear rate and the lo
packing fraction, as would be expected. EMD gives a r
sonably accurate prediction for the shift of the first maximu
position and for the changes in the phase of oscillation
gne(r) caused be shearing atf50,p/4,p/2. However, the
corresponding changes in the magnitude of the first m
mum ofgne(r) predicted by EMD have an opposite directio
in comparison with those predicted by NEMD~see Table II!.
For the azimuthal anglesf50 andf5p/2, shearing cause

FIG. 9. The distortion of the fluid structure due to she
Dgne(r ,u,f)5gne(r ,u,f)2geq(r ), at n50.3, u5p/2, g*
50.689, f50 ~lower portion of the figure!, f5p/4 ~middle por-
tion of the figure!, f53p/4 ~upper portion of the figure!. EMD
with the low-shear-rate nonequilibrium potential~6! ~solid lines!,
NEMD ~symbols!. Herer * 5r /s.

TABLE II. Shift in the position Dr max and magnitude
Dgne(r max,u,f)5gne(r max,u,f)2geq(r max) of the first maximum
of the nonequilibrium pair distribution function due to shear.

f Dr max
EMD Dr max

NEMD Dgne
EMD(r max,u,f) Dgne

NEMD(r max,u,f)

0.00 0.01 0.00 20.405 0.092
p/4 0.06 0.05 0.124 20.355
3p/4 20.14 20.04 1.120 0.206
e
h

e

e
-

ed

n

id
r
-

f

i-

an increase of the first maximum ofgne(r), and forf5p/4,
a decrease, while EMD predictions are in the opposite dir
tions. Only in the case off53p/4 do both EMD and
NEMD simulations predict an increase of the first maximu
of gne(r) due to shearing. However, at the same time, EM
strongly overestimates this increase. Similar behavior can
seen in the case of the lower packing fractionn50.3. One
notable artifact of the low-shear-rate nonequilibrium pote
tial ~6! is the displacement of the peaks ing(r ) to lower
values ofr at f53p/4, which results from the sin 2f term,
which appears in both the low-shear-rate nonequilibrium
tential ~6! as well as the full potential~3!.

In order to have a complete, self-consistent theory of
nonequilibrium structure of fluids under shear, one mig
expect to calculate the hydrostatic pressure and the New

, FIG. 10. The difference between the self-consistent value of
pressure and its equilibrium value (p2peq)/NkBT as a function of
the shear rateg* at n50.45, NEMD ~circles!, MHNC approxima-
tion for the low-shear-rate nonequilibrium potential~6! ~solid line!
and atn50.3, NEMD ~diamonds!, MHNC approximation for the
low-shear-rate nonequilibrium potential~6! ~dashed line!.

FIG. 11. The distortion of the fluid structure due to she
Dgne(r ,u,f)5gne(r ,u,f)2geq(r ), for the system with the low-
shear-rate nonequilibrium potential~6! at n50.45, u5p/2, f
50, g* 50.75 ~upper portion of the figure!, andg* 50.5 ~lower
portion of the figure!. MHNC approximation with the low-shear
rate nonequilibrium potential~6! ~solid lines!, NEMD ~symbols!.
Here r * 5r /s.
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ian viscosity~needed in the nonequilibrium potential! from
the theory itself~and not from external simulations or param
etrizations thereof!. As a first step to this end, we have ca
culated the hydrostatic pressure self-consistently from
theory using Eq.~10!. Figure 10 shows the change of th
pressure due to shear (p2peq)/NkBT as a function of shea
rateg* from the self-consistent MHNC theory with the low
shear-rate nonequilibrium potential~6! and from the NEMD
calculations at the two packing fractionsn50.45 andn
50.30, respectively. Clearly, the self-consistent MHN
theory with the low-shear-rate nonequilibrium potential p
dicts the effects of shear on pressure accurately only at
low shear rates.

Now, we have shown that the MHNC theory is quite a
curate in predicting the distortion of the structure due to
low-shear-rate nonequilibrium potential~6!. We have shown
that the low-shear-rate nonequilibrium potential~6! predicts
the distortion of the fluid structure by shear only quali
tively. And we have shown that the self-consistent MHN
theory predicts the hydrostatic pressure poorly. We can
have great hope for the success of the self-consistent MH
theory with the low-shear-rate nonequilibrium potential~the
combining of all the approximate parts of the theory! to pre-
dict the distortion due to shear. Nevertheless, for compl
ness, in Figs. 11–15 we present the distortion of fluid str
ture due to shear from the theory and from the NEM

FIG. 12. The same as in Fig. 11 forf5p/4.

FIG. 13. The same as in Fig. 11 forf5p/2.
e
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calculations. We must conclude that the theory is not v
successful.

VI. CONCLUDING REMARKS

It is an interesting prospect to use the well-developed m
chinery of equilibrium statistical mechanics with a noneq
librium potential to predict the structure and properties
fluids in time-invariant, nonequilibrium states such
steady-state shear flow. Gan and Eu’s contribution in t
regard@6,7# has not been much noticed. Using the metho
of NEMD and EMD with a nonequilibrium potential, we
have tested the low-shear-rate version of their theory
some variants on it. We find that the OZ relation with
nonequilibrium potential can be used with the PY closure
~better! with the MHNC closure to predict the distortion o
the structure of a simple soft-sphere fluid due to the none
librium potential. We find that the low-shear-rate nonequil
rium potential proposed by Gan and Eu@6,7# yields only a
qualitative prediction of the distortion of fluid structure du
to shear and, when used self-consistently with the the

FIG. 14. The same as in Fig. 11 forf53p/4.

FIG. 15. The distortion of the fluid structure due to she
Dgne(r ,u,f)5gne(r ,u,f)2geq(r ), for the system with the low-
shear-rate nonequilibrium potential~6! at n50.3, g*
50.689, u5p/2, f50 ~upper portion of the figure!, f5p/2
~middle portion of the figure!, andf53p/4 ~lower portion of the
figure!. MHNC approximation for the nonequilibrium potential~6!
~solid lines!, NEMD ~symbols!. Herer * 5r /s.
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yields poor predictions of the effect of shear on hydrosta
pressure except at very low shear rates. Not surprisin
when the low-shear-rate nonequilibrium potential is us
self-consistently, the predictions of combined theory
rather poor. Nevertheless, there still lies hope in the use o
improved nonequilibrium potential. In continuing work@18#,
we are exploring the performance of the Gan-Eu theory w
the full nonequilibrium potential~3!, and we are seeking
even more accurate models of the nonequilibrium potent
-

c
y,
d
e
n

h
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