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Distribution functions of a simple fluid under shear: Low shear rates
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Anisotropic pair distribution functions for a simple, soft sphere fluid at moderate and high density under
shear have been calculated by nonequilibrium molecular dynamics, by equilibrium molecular dynamics with a
nonequilibrium potential, and by a nonequilibrium distribution function th¢eryH. Gan and B. C. Eu, Phys.

Rev. A 45, 3670(1992] and some variants. The nonequilibrium distribution function theory consists of a
nonequilibrium Ornstein-Zernike relation, a closure relation, and a nonequilibrium potential and is solved in
spherical harmonics. The distortion of the fluid structure due to shear is presented as the difference between the
nonequilibrium and equilibrium pair distribution functions. From comparison of the results of theory against
results of equilibrium molecular dynamics with the nonequilibrium potential at low shear rates, it is concluded
that, for a given nonequilibrium potential, the theory is reasonably accurate, especially with the modified
hypernetted chain closure. The equilibrium molecular-dynamics results with the nonequilibrium potential are
also compared against the results of nonequilibrium molecular dynamics and suggest that the nonequilibrium
potential used is not very accurate. In continuing work, a nonequilibrium potential better suited to high shear
rates[H. H. Gan and B. C. Eu, Phys. Rev. 4%, 6344(1992] is being tested.S1063-651X99)05608-1

PACS numbes): 05.60.Cd, 05.20.Jj, 05.96m

I. INRODUCTION phenomenological way to the macroscopic continuity equa-
tions allowing calculation of the density-density correlation
Kinetic processes are of fundamental interest and imporfunction and from it the nonequilibrium radial distribution
tance in many branches of science and engineering, yet thefinction and the structure factor; see, for examigg, Simi-
ries of nonequilibrium systems have lagged far behind thostarly, Hess[4,5] proposed and solved a phenomenological
of equilibrium systems. For example, the theories of equilib-evolution equation for the nonequilibrium radial distribution
rium statistical mechanics provide practical means for calcufunction. Gan and EUGE) proposed6,7] an alternative ap-
lating the properties of fluids at equilibrium from their struc- proach and applied it to dense fluids at both low and high
ture. And likewise, the structure of fluids at equilibrium, asshear rates. They derived a heierarchy of nonlinear integral
represented by their pair distribution functions, can be calcuequations for the nonequilibrium fluctuations from the non-
lated with reasonable accuracy and efficiency using integratéquilibrium canonical distribution function, an approach
equation theories based on the Ornstein-Zert®2) rela-  similar in spirit to the theory of the structure of dense equi-
tion with an approximate closure relation, such as thdibrium fluids. The GE theory leads to an integral equation
Percus-Yevick(PY) or the hypernetted chai(HNC) equa- for the anisotropic nonequilibrium pair distribution function
tion; see, for exampld,l]. The situation is nowhere near so which reduces to the PY integral equation in the equilibrium
well-developed, however, for systems that are not at equiliblimit, suggesting that the OZ relation also holds for nonequi-
rium. Useful theories have been available only for dilute gadibrium fluids, i.e., the nonequilibrium OZ equatiédNEOZ).
systems or for systems only slightly removed from equilib-In essence, the GE theory postulates a nonequilibrium poten-
rium, where linear-response theory leads to the linear trangtal under which the equilibrium structure of a fluid is that of
port equations with constant transport coefficients, such athe nonequilibrium fluid.
Newton’s law of viscosity. Evans and Morri§2] present a Unfortunately, the GE theory has not received significant
well-organized development of the modern statistical meattention or use, and testing to date has been limited. In very
chanics of nonequilibrium fluids and present practical meansecent work[8], Farhat and Eu used the nonequilibrium po-
of determining the properties of nonequilibrium fluids, suchtential of Gan and E(i6] in performing Monte CarldMC)
as the transport coefficients for viscosity, thermal conductivsimulations of a simple fluid under shear; the results showed
ity, mass diffusivity, etc., from molecular simulation calcu- some deviations from results for the same system by NEMD,
lations with computers, e.g., calculation of the viscosity of areflecting some deficiency or deficiencies in the nonequilib-
liquid far from equilibrium by nonequilibrium molecular dy- rium potential or the MC algorithm, or in both. Farhat and
namics(NEMD). Gan further showed resasonable agreement between the GE
There have been relatively few attempts at theories otheory and MC, both with the same nonequilibrium potential.
dense, nonequilibrium fluids in the nonlinear regime. Ap-Thus, there is considerable promise in the NEOZ approach
proaches based on fluctuating hydrodynamics have been utiut no definitive test of its accuracy or reliability. The OZ-
lized, in which nonrandom fluctuations have been added in dased theories of equilibrium fluids have been usefully ex-
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tended to complex molecular fluids, even to long-chain poly-

mers [9-11. If the NEOZ-based theory and the C(rlzyt)=h(r12,t)+/0f drsc(ryz,t)h(rsy,t) 1)
nonequilibrium potential of GE were found to be accurate in

definitive testing against simulations, they, too, might be useand a PY-like closure relation

fully extended for practical applications with complex mo-

lecular fluids. If the theory or potential is found to be defi- c(r,t)y=f.«r,0)[h(r,t)—c(r,t)+1], (2
cient in such testing, a sound basis is established for seeking
improvement. wherep is the number density,,((r,t) is the Mayer function

In this paper, our purpose is to begin exploring the usefor the nonequilibrium pair potentiaV,(r,t), i.e., frd(r,t)
fulness of the GE theory and to test it against new simulatiori= €XH ~BVadr,1) =1, andB=1/(kgT). _
results generated for this purpose for a simple soft sphere AS One can see, a key quantity of the present theory is the
fluid. As an aid to the reader, we summarize the GE theory iftonequilibrium potentiaV,(r,t), which follows from the
Sec. II. In Sec. Il we describe our approach to the numericaf!ution of the corresponding kinetic equation. To proceed
solution of the NEOZ equation and, in particular, to the ver- urther, it is necessary to specify the particular fluid of inter-

sions with the PY closure and with a modified hypernetteate.St' "?:" Illts _equ[|(lslb7r]|um poten_ttljal artld Zheirl?g fllow C(C):nd"
chain(MHNC) closure. Special attention is paid to the num- lons. Foflowinglo, 7], we consider steady-stateé planar L-ou-

ber of spherical harmonics used in the numerical solution. igie flow of a ﬂuu_j conflned.between two infinite parallel
Sec. IV we briefly describe our NEMD simulations as well plates. They axis is perpendicular to the plates which are

as our equilibrium molecular-dynami¢EMD) calculations ~located aty="3D and move with a uniform velocity- 3uo
with GE’s nonequilibrium potential. We present and discusgn the opposite directions along tixeaxis. The correspond-
our results in Sec. V, and we conclude with a few briefing set of equations for the nonequilibrium potentégk(r)
remarks in Sec. VI. has been derived and solved[#7]. As a result, the follow-
ing general expression for the nonequilibrium potential has
been proposed:
Il. SUMMARY OF GAN-EU THEORY N(r
To avoid unnecessary repetition, we will present here  VadT,0,¢)=V(r)+a(r)r—-
only a summary of GE theory, focusing mostly on the details
which are needed to formulate the final set of equations to be 1Ny . )
solved. We refer the interested reader to the original publi- 3 5(2 sif@sir’¢—1) |, ©)
cations[6,7]. The point of departure in the OZ theory for the

nonequilibrium structure of dense simple fluids is the NoNyyhereV(r) is the equilibrium potentialp is the hydrostatic

equilibrium distribution function written in the exponential pressure[T andN, are the shear and normal stresses, respec-
or canonical form suggested by the solution of the generalgyely, m, is reduced massg is the size parameter of
ized Boltzmann equation. This form, with nonequilibrium e particles, y is the rate of shearing, i.e.,y
effects accounted for via the corresponding terms in the po- du,/dy), Uy is the flow velocity along the axis, and
tential energy function, is similar to that used in the equilib—a(r) is a switching factor

rium statistical mechanical theory of fluids. The nonequilib-

rium part of the potential follows from the solution of the set 9o(r), r=<ro
of equations derived from the generalized Boltzmann equa- a(r)= (4)

tion. This set of equations couples the nonequilibrium poten- 1, r>ro

tial with the macroscopic observables, which are used to de- . ) o )

scribe the nonequilibrium process of interest. Thus, théVhich is needed to avoid the infinitely large negative value
initial problem of describing the nonequilibrium structure Of Vadr) for r=0. Hererg is defined by the following in-
has been substituted by the problem of describing the equfduality:go(r)<1 for 0<r=ry andgo(r) is the equilibrium
librium structure with nonequilibrium potential. The latter Pair distribution function of the present system. The shear
task is rather straightforward and once the interparticle poStreéss and normal stress satisfy the following algebraic equa-

tential is specified, one can use the whole machinery of th#0n:

equilibrium statistical mechanical theory of liquids to gener-

ate the corresponding OZ equation and its closure conditions. ¥ 7pp [1 4, TP [1[2 _

In [6,7] this goal is achieved by formulating the correspond- 6 7, V2 1- X tsin 7 V2 §X_1 =0,
ing Kirkwood hierarchy of equations and adopting the Kirk- (5)
wood superposition approximation together with the assump-

tion that the non-heat-conducting fluid in question undergoesvhere
steady shear flow at uniform density and temperature. It is

) I .
ﬁsmzasm 2¢

assumed also that the equilibrium interparticle interaction is N, II 2
pairwise additive. As a result, the nonequilibrium analog of %:X: E: —5\V X 1+ 3%/
the PY equation has been derived. This PY-like equation can
be written in the form of the OZ equation, which couples the

N b — 67y (2momH) 12

nonequilibrium directc(ri,,t) and total h(ry,,t) time- - —_
dependent pair correlation functions p P po(2B)Y2
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and 7, is the Newtonian(zero-shear-rajeviscosity. The wherey=(1/1/2)pc(Be)Y* andm=2m,. This expression
nonequilibrium potentiaV(r) (3) is specialized in the co- for 7, has been used to calculate the nonequilibrium poten-
ordinate frame with the azimuthal angle around thaxis tial (6).
denoted asp and the polar angle between vectaand thez The expression for the nonequilibrium potenti) also
axis denoted a$. involves the value of the hydrostatic pressyse which

It is assumed that the expression for the nonequilibriumshould be calculated self-consistently for each particular
potential (3), which we shall call the full potential, is valid value of the shear ratg. With this aim one could use the
for any degree of departure from equilibrium, i.e., for anyfollowing expression for the pressure tensoof the steady-
values of the shear rate At low values of the shear rate, the state sheared fluiglL3]:
contribution from the terms involving the normal stréés
can be neglected and for the shear stidssne can use the p—Pu_ 1 2] M av(r)

r

Newtonian law of viscosityll = — 5,y. As a result, fory B~ 2 ar
<1 we have

a(r) (€)

which in the present case gives

av(r) ) "
Vne(r,6,¢)=V(r)—Zprr &(r sin2¢sirfd. (6 @:1+4\/;PJ drgegr)r (10
p 0

This expression for the nonequilibrium potential in the low
shear limit, proposed if6,7], will be used for the results
presented in this paper; we shall refer to it as the low-shea
rate nonequilibrium potential. Work in progress will examine
results with the full potentia(3).

As in [6,7], we consider the case of the soft-sphere equi
librium intermolecular potential

Here,U is a unit second-rank tensor aggy(r) is the (00)
gomponent of the spherical harmonic expansiog@}). Al-
ternatively, one could use results from NEMD for both the
Newtonian viscosityn, and the hydrostatic pressugein
calculating the nonequilibrium potenti®l,.

Because of the steady-state shearing conditions, the non-
equilibrium pair potential6) as well as the direct and total

o\ 12 correlation functions are time-independent. The NEOZ equa-

V(r)= e(—) (7)  tion and PY closure relation take the following form:

For this potential, NEMD results for the Newtonian viscosity

have been parametrizé2], h(k)=c(k)+ pc(k)h(k) 11
(m6)1/2
=[0.1714+0.022€%8¥ - 1)]————, g) and
7o=| 2 )]02(,85)2’3 (8
TABLE I. The shear-rate-dependent viscosifyand pressure c(r)=fpr)[h(r)—c(r)+1]. (12

for soft-sphere particles at packing fractions 0.45 andy=0.30

calculated from NEMD simulations, where the number in the pa-

rentheses is the statistical uncertainty in the least significant digitd he OZ equatiort11) is written in terms of the Fourier trans-
of the corresponding number amg, is the total run length in the forms of the direct and total correlation functions. This form

reduced time unitr. of the OZ equation is more convenient for numerical calcu-
lations than the corresponding version of the OZ equation

v=0.45 v=0.3 written in the realr space. In addition to the PY closure

v* 7 p* tun Y 7 p* trun relation (12), we propose the so-called modified HNC

(MHNC) closure with a bridge functioi(r) chosen in a

0.00 1.472) 8.3891) 0.00 0.4964) 2.6641) form proposed by Verli14],

0.04 1.42816) 8.3901) 2400 0.05 0.49§) 2.6661) 2920

0.09 1.4047) 8.3921) 3940 0.10 0.49®) 2.6661) 5120

0.16 1.40%) 8.3971) 1000 0.15 0.49@) 2.6671) 4340  c(r)=ex — BV r)+h(r)—c(r) +B(r)]—h(r) +c(r) -1,
0.25 1.3895) 8.411(1) 1040 0.25 0.492) 2.6691) 3120 (13)
0.30 1.3915) 8.4172) 660 0.36 0.48@) 2.6731) 740
0.36 1.3784) 8.4312) 920 0.456 0.48@) 2.6791) 2120
0.407 137%2) 8.4431) 4080 0.50 0.482) 2.6811) 940 thr)—c(n T

0.50 1.35%2) 8.4681) 3200 0.60 0.48Q2) 2.6891) 1180 B(r)=— — .
0.64 1.3384) 85143 340 0.689 0.47d) 2.6961) 2160 2[1+0.8n(r) = 0.8¢(n)]
0.75 1.3181) 8.5531) 2400 0.80 0.474) 2.7061) 1240  EForB(r)=0, the present MHNC closure reduces to the HNC

1.00 1.2771) 8.6641) 980 1.20 0.46Q) 2.7571) 6540

where

(14

1.20 12471) 8.6781) 1320 1.44 0.45Q) 2.7941) 2780 lll. NUMERICAL SOLUTION OF THE THEORY
144 1.2141) 8.9041) 1660 1.60 0.44@) 2.83Y1) 800
1.60 1.1911) 9.0022) 640 The OZ equation11) together with its closure relation

(12) [or Eq.(13)], relations(10) and(5) form a closed set of
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FIG. 1. Mayer function for the low-shear-rate nonequilibrium FIG. 3. The same as in Fig. 2 fak= /4.
potential(6) for y* =0.75, v=0.45, ando* =pe ™ 0>=8.56. Exact
results for¢= /4 (circles and ¢=3=/4 (diamonds; results with  method allows us to sample effectively both the rapidly vary-
Ima=4 (dashed lines and with I,,=8 (solid lines. Herer*  ing part of the correlation functions at small distances and
=rlo. the long-range, slowly decaying portion using a relatively

small number of grid points =512, which cover the dis-

equations to be solved. Solution of this set of equations cagance up ta/o=73.
be obtained by expansion in spherical harmonics as has been
utilized in the equilibrium theory of molecular fluids. It con- IV. MOLECULAR-DYNAMICS SIMULATIONS

sists of expanding the correlation functions in spherical har- i . .
monics, writing the initial OZ equation as a set of equations Like the theoretical calculations, the molecular-dynamics

for the spherical harmonic expansion coefficients in Fourief@lculations were performed for a soft-sphere fluid with the
k space, and solving this set using either a direct iteratiofduilibrium intermolecular potentia¥). For the NEMD cal-
method or combining the latter with the Newton-Raphsorculations, the SLLOD(so named because of its close rela-
method. This technique is rather standard and details can gi@nship to the Dolls tensor algorithnequations of motion
found in many placegsee, for example, Ref§15,16)). In [2] were integrated using a velocity Verlet integrator with a
the present study, solutions of the corresponding set of equ&lose thermostdl]. A time step of 0.002 was used for the
tions for the spherical harmonic expansion coefficients havétegration, wherer=o\/m/e is the reduced time unit. The
been obtained using the direct iteration method. The forwargoft-sphere potential was truncated gt 2.0o, and no long-
and inverse Hankel transforms, which are needed to coupl@nge correction was applied because it is very small. The
the spherical harmonic expansion coefficients in real andEMD calculations with the low-shear-rate potentiél were
Fourier spaces, have been carried out in logarithmic varicarried out in the same way but with the shear rate in the

ables, using the method developed by Talnjad]. This SLLOD equations of motion set to zero. NEMD and EMD
calculations were performed with 2048 particles, and rela-

tively long simulations were carried out to ensure that the

0.7 T T T T T T T
o statistical uncertainties are small.
0.5 V. RESULTS AND DISCUSSION
0.4 The soft-sphere fluid was studied at two different values
03 of the packing fractiorv= m/6po>=0.30, 0.45 and two dif-
0.2 - a5 [ T T T T T T T ]
0.1 o2 ’ Ine” Yeq %
3 o .
-0.1
0.2

0 0.5

FIG. 2. The distortion of the fluid structure due to shear,
Agndr,0,9)=0ndr,0,¢) —gedr), for the system with the low-
shear-rate nonequilibrium potentid@) at v=0.45, 6= /2, $=0,
y*=0.75, andp{gyp=8.56 (upper portion of the figujeand y*
=0.5 andpygyp=28.47 (lower portion of the figure MHNC ap-
proximation withl =8 (solid lineg, MHNC approximation withl
=4 (long dashed lines PY approximation witH =4 (short dashed
line), and EMD (symbols. Herer* =r/o. FIG. 4. The same as in Fig. 2 feb=37/4.
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FIG. 5. The distortion of the fluid structure due to shear, FIG. 7. The same as Fig. 5 but ét=7/2.

AQne(r,0,0) =0ne(r, 0,) —Qeq(r) at »=0.45, 0=m/2, ¢
=0, +v*=0.75(upper portion of the figude y* =0.5 (lower por-
tion of the figurg. EMD with the low-shear-rate nonequilibrium onics. For the shear rate’ =0.75, the Mayer function for
potential(6) (solid lines, NEMD (symbols. Herer* =r/o. the nonequilibrium potentia(6) can be accurately repre-
sented using eight harmonics. However, with further increase
of the shear rate, the number of harmonics needed to de-
ferent values of reduced shear ragg=yr=yoym/e at  scribe the Mayer function rapidly increases.
each packing fraction. For=0.45, we consider the values In order to test the accuracy of the PY and MHNC theo-
of the shear ratey*=0.50, 0.75 and forv=0.3, ¥*  ries in reproducing the structure of the system with the low-
=0.456, 0.689. All the calculations were carried out at re-shear-rate nonequilibrium potentiéd), in Figs. 2—4 we il-
duced temperature valye* =Be=1. Table | presents re- |ustrate the distortion of the fluid structure due to shear, here
sults from the NEMD calculations, including values of the defined as\gn(r, 6, #) =gndr, 0, ) — ge(r), Whereg,. and
Newtonian viscosityz, (obtained by extrapolating the re- Jeq are the nonequilibrium and equilibrium pair distribution
sults to zero shear rgtand values of the reduced hydrostatic functions, respectively, for two different values of the shear
pressurep* =pel/a* as a function of the reduced shear raterate (y*=0.5, 0.75) and at system packing fraction
¥* =7, which are used as input to some of the theoretical= 0.45. Here predictions of PY and MHNC theories are com-
calculations. pared against the corresponding EMD simulation results for
As a first step in testing the theory, we compared PY andhe nonequilibrium potentia(6) with hydrostatic pressure
MHNC results for the pair distribution functiog.(r) of the  obtained from NEMD simulatiorfTable )). At lower values
system with»=0.45 at equilibrium §* =0) against corre- of the shear ratey* =0.5), agreement between both theo-
sponding equilibrium molecular-dynamig¢EMD) simula-  retical methods and EMD is very good for the values of the
tion results. As expected, agreement between theoretical rezimuthal anglep= /4 and ¢=3m/4. For $=0, PY and
sults and results of EMD simulation was good, and theMHNC underpredict the depth of the first minimum of the
agreement was better in the case of MHNC theory. To estidifference Ag,(r, 6, ¢), with MHNC giving slightly better
mate the number of harmonitg,, needed to represent the results. For the higher shear ratg*(=0.75), agreement is
Mayer function accurately for the nonequilibrium potential also better in the case of MHNC. Fgr= /4, agreement is
(6), in Fig. 1 we compare an exact Mayer function with very good; for¢=0, MHNC slightly underpredicts the depth
Mayer functions approximated by a finite number of har-of the first minimum ofAg,(r); and for ¢=3m/4, MHNC

4

FIG. 6. The same as Fig. 5 but ét= 7/4. FIG. 8. The same as Fig. 5 but ét=37/4.



FIG. 9. The distortion of the fluid structure due to shear,
AQndr.0,8)=0ndr,0,$) —gedr), at »=0.3, O=m/2, »*
=0.689, ¢=0 (lower portion of the figurg ¢ = 7/4 (middle por-
tion of the figure, ¢=3w/4 (upper portion of the figupe EMD
with the low-shear-rate nonequilibrium potenti@) (solid lineg,
NEMD (symbols. Herer* =r/q.

underpredicts the value of the first maximum. In all cases use

0.8

0.7

0.6

0.5

0.4

03

0.2

0.1
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(P-P__)NKT
eq

0.8 1

FIG. 10. The difference between the self-consistent value of the

pressure and its equilibrium valu@{ p.g/NkgT as a function of
the shear rate* at v=0.45, NEMD (circles, MHNC approxima-
tion for the low-shear-rate nonequilibrium potentié) (solid line)
and atry=0.3, NEMD (diamond$, MHNC approximation for the
low-shear-rate nonequilibrium potentid@) (dashed ling

of eight harmonics improves the results in comparison withn increase of the first maximum gf(r), and for¢= /4,

results obtained with only four harmonics.

a decrease, while EMD predictions are in the opposite direc-

Next we investigate the accuracy of the low-shear-ratdions. Only in the case okp=3n/4 do both EMD and
nonequilibrium potential6) in predicting the nonequilibrium NEMD simulations predict an increase of the first maximum
structure of the system in question. This goal can best bef gnd{r) due to shearing. However, at the same time, EMD
achieved by comparing the results from NEMD against re-strongly overestimates this increase. Similar behavior can be

sults from EMD with the low-shear-rate potenti@). Fig-

seen in the case of the lower packing fractios 0.3. One

ures 5—9 make this comparison at two values of the reduce@otable_artifact .Of the low-shear-rate nonequilibrium poten-
shear rate used by Gan and 53;0.812 and 0.547 at pack- tial (6) is the displacement of the peaks gfr) to lower

ing fraction v=0.45 and at;=0.764 at packing fractiow

=0.3; the values o§ have been obtained using values of
v*, p* from NEMD (see Table )l and 5, using the

Agndr,0,¢) between the NEMD results and the EMD re-
sults using the low-shear-rate nonequilibrium potent)|
nevertheless, the low-shear-rate nonequilibrium pote(ijal

values ofr at ¢=37/4, which results from the sin@term,
which appears in both the low-shear-rate nonequilibrium po-
tential (6) as well as the full potentia3).

SEE . In order to have a complete, self-consistent theory of the
NEMD results parametrizatiof8). There are notable differ- nonequilibrium structure of fluids under shear, one might

ences in the magnitude and radial position of peaks inxpect to calculate the hydrostatic pressure and the Newton-

0.7

does seem to capture some of the effects of shear on the fluid 0.6

structure, particularly at the lower shear rate and the lower
packing fraction, as would be expected. EMD gives a rea-
sonably accurate prediction for the shift of the first maximum
position and for the changes in the phase of oscillation of
Ondr) caused be shearing @=0,7/4,7w/2. However, the
corresponding changes in the magnitude of the first maxi-
mum ofg,(r) predicted by EMD have an opposite direction
in comparison with those predicted by NEMBee Table .

For the azimuthal angle$=0 and¢= 7/2, shearing causes

TABLE 1l. Shift in the position Ar.,. and magnitude

Agnd! max: 0, ) = Gnd max: 01 #) — Ge(Fmax) Of the first maximum
of the nonequilibrium pair distribution function due to shear.

¢ Arpm Arma® AGRP(Mmax6,¢)  AGE"C(Fmax, 6, )
000 001 000  —0.405 0.092
74 006 005 0.124 ~0.355
3ml4 —014 —0.04 1.120 0.206

0.5

0.4

03

0.2

0.1

0

-0.1

-0.2

T
Ine” 9eq

o

O(Ib -

Q

0

FIG. 11. The distortion of the fluid structure due to shear,

Agndr.0,0) =0gndr.0,6) —ge(r), for the system with the low-
shear-rate nonequilibrium potentié8) at v=0.45, 60=m/2,
:0,

¢

v* =0.75 (upper portion of the figune and y* =0.5 (lower

portion of the figure MHNC approximation with the low-shear-
rate nonequilibrium potentialb) (solid lineg, NEMD (symbols.
Herer*=r/o.
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4 1 1 1 1 1 T 1

9ne” Yeq

FIG. 12. The same as in Fig. 11 fgr= /4. FIG. 14. The same as in Fig. 11 fgr=3mx/4.

ian viscosity(needed in the nonequilibrium potentidtom calculations. We must conclude that the theory is not very

the theory itsel{and not from external simulations or param- Successful.

etrizations thereof As a first step to this end, we have cal-

culated the hydrostatic pressure self-consistently from the VI. CONCLUDING REMARKS
theory using Eq(10). Figure 10 shows the change of the , ) ,

pressure due to sheap{ pe)/NksT as a function of shear Itis an interesting prospect to use the_well-_developed ma-
rate y* from the self-consistent MHNC theory with the low- chinery of equilibrium statistical mechanics with a nonequi-
shear-rate nonequilibrium potenti@) and from the NEMD librium potential to predict the structure and properties of

calculations at the two packing fractions=0.45 and v fluids in time-invariant, nonequilibrium states such as

=0.30, respectively. Clearly, the self-consistent MHNC Steady-state shear flow. Gan and Eu’s contribution in this

theory with the low-shear-rate nonequilibrium potential pre-€9ard[6,7] has not been much noticed. Using the methods
f NEMD and EMD with a nonequilibrium potential, we

dicts the effects of shear on pressure accurately only at ve . )
low shear rates. ave tested the low-shear-rate version of their theory and
some variants on it. We find that the OZ relation with a

Now, we have shown that the MHNC theory is quite ac- ae i )
donequilibrium potential can be used with the PY closure or

curate in predicting the distortion of the structure due to th ) . i :

low-shear-rate nonequilibrium potentid). We have shown (bettey with the MI_—|NC closure to pred_lct the distortion of _

that the low-shear-rate nonequilibrium potentid) predicts t_he_ structure (_)f a S|mple soft-sphere fluid due to the nonequi-
librium potential. We find that the low-shear-rate nonequilib-

the distortion of the fluid structure by shear only qualita-
y v A rium potential proposed by Gan and E& 7] yields only a

tively. And we have shown that the self-consistent MHNC Y o s X ,
theory predicts the hydrostatic pressure poorly. We canndiu@litative prediction of the distortion of fluid structure due

have great hope for the success of the self-consistent MHNE Shear and, when used self-consistently with the theory,

theory with the low-shear-rate nonequilibrium potentihle

combining of all the approximate parts of the thedxy pre- % %q 5 ' ' ' ' '
dict the distortion due to shear. Nevertheless, for complete- 2 4

ness, in Figs. 11-15 we present the distortion of fluid struc-
ture due to shear from the theory and from the NEMD
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FIG. 15. The distortion of the fluid structure due to shear,
01 AGndr,0,)=0ndr,0,6) —ge(r), for the system with the low-
04 . i shear-rate  nonequilibrium potential(6) at v»=0.3, 9*
! =0.689, 0=m/2, ¢=0 (upper portion of the figuje ¢= /2
02 e s 2s s a5 (middle portion of the figure and ¢=3/4 (lower portion of the

figure). MHNC approximation for the nonequilibrium potentid)
FIG. 13. The same as in Fig. 11 fgr= 7/2. (solid lineg, NEMD (symbols. Herer* =r/go.
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yields poor predictions of the effect of shear on hydrostatic ACKNOWLEDGMENTS

pressure except at very low shear rates. Not surprisingly,

when the low-shear-rate nonequilibrium potential is used ) o _
self-consistently, the predictions of combined theory are Y-V.K.is grateful for helpful communications with Pro-
rather poor. Nevertheless, there still lies hope in the use of af¢ssor Eu. This work was supported by the Division of Ma-
improved nonequilibrium potential. In continuing warkg], ~ terials Sciences of the U.S. Department of Energy. Oak
we are exploring the performance of the Gan-Eu theory wittRidge National Laboratory is operated for the U.S. Depart-
the full nonequilibrium potential3), and we are seeking ment of Energy by Lockheed Martin Energy Research Cor-
even more accurate models of the nonequilibrium potentialporation under Contract No. DE-AC05-960R22464.

[1] J. P. Hansen and I. R. McDonal@heory of Simple Liquids [11] Yu. V. Kalyuzhnyi, C.-T. Lin, and G. Stell, J. Chem. Phys.

2nd ed.(Academic, London, 1986 108 6525(1998.

[2] D. J. Evans and G. P. MorrisStatistical Mechanics of Non- [12] W. T. Ashurst and W. G. Hoover, Phys. Rev. %, 658
equilibrium Liquids(Academic, London 1990 (1975.

[3] A. M. S. Tremblay, M. Arai, and E. Sigga, Phys. Rev.28  [13] J. H. Irwing and J. G. Kirkwood, J. Chem. Phys8, 817
1451(198)). (1950.

[4] S. Hess, Phys. Rev. &2, 2844(1980. [14] L. Verlet, Mol. Phys.41, 183 (1980.

[5] S. Hess, Physica A18 79 (1983. [15] C. G. Gray and K. E. GubbinsTheory of Molecular Fluids

[6] H. H. Gan and B. C. Eu, Phys. Rev. 4%, 3670(1992.

[7] H. H. Gan and B. C. Eu, Phys. Rev. 46, 6344(1992.

[8] H. Farhat and B. C. Eu, J. Chem. Ph$40, 97 (1999.

[9] K. S. Schweizer and J. G. Curro, iddvances in Polymer
Sciencesgdited by L. Monnerie and U. W. SutéBpringer-
Verlag, Berlin, 1994, Vol. 116, p. 320.

[10] J. Chang and S. I. Sandler, J. Chem. P2, 437 (1995.

(Clarendon Press, Oxford, 1984

[16] S. Labik, R. Pospisil, A. Malijevsky, and W. R. Smith, J. Com-
put. Phys.115 12 (1994).

[17] J. D. Talman, J. Comput. Phy29, 35 (1978.

[18] S. T. Cui, Yu. V. Kalyuzhnyi, and H. D. Cochrafunpub-
lished.



